最全面的考研数学各科核心考点梳理

作者:佚名    网校新闻来源:本站原创    点击数:    更新时间:2016/12/3
分享网校课程至:
我要评论

数学冲刺复习一定要把大纲中规定的核心重要考点进行梳理,结合做题来进一步的巩固,熟练把握。下面网校整合了高数、线代和概率部分的核心考点,广大考生再来梳理看看,你是否复习有所遗漏。



  高数
  一、函数极限连续

  1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。
  2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。掌握利用两个重要极限求极限的方法。理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限。
  3、理解函数连续性的概念,会判别函数间断点的类型。了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和介值定理),并会应用这些性质。重点是数列极限与函数极限的概念,两个重要的极限:lim(sinx/x)=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。难点是分段函,复合函数,极限的概念及用定义证明极限的等式。


  二、一元函数微分学
  1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。
  2、掌握导数的四则运算法则和一阶微分的形式不变性。了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。
  3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。
  4、理解函数极值的概念,掌握函数最大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平铅直和斜渐近线。
  5、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。
  6、掌握用罗必塔法则求未定式极限的方法,重点是导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数。罗必塔法则函数的极值和最大值、最小值的概念及其求法,函数的凹凸性判别和拐点的求法。难点是复合函数的求导法则隐函数以及参数方程所确定的函数的一阶、二阶导数的计算。


  三、一元函数积分学
  1、理解原函数和不定积分和定积分的概念。
  2、掌握不定积分的基本公式,不定积分和定积分的性质及定积分中值定理,掌握换元积分法和分部积分法。
  3、会求有理函数、三角函数和简单无理函数的积分。
  4、理解变上限积分定义的函数,会求它的导数,掌握牛顿莱布尼兹公式。
  5、了解广义积分的概念并会计算广义积分。
  6、掌握用定积分计算一些几何量和物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力等。)重点是原函数与不定积分的概念及性质,基本积分公式及积分的换元法和分部积分法,定积分的性质、计算及应用。难点是第二类换元积分法,分部积分法。积分上限的函数及其导数,定积分元素法及定积分的应用。


  四、向量代数与空间解析几何
  1、理解向量的概念及其表示。
  2、掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件;掌握单位向量、方向数与方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。
  3、掌握平面方程和直线方程及其求法,会利用平面直线的相互关系解决有关问题。
  4、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。
  5、了解空间曲线的参数方程和一般方程;了解空间曲线在坐标平面上的投影,并会求其方程。


  五、多元函数微分学
  1、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。
  2、理解多元函数偏导数和全微分的概念,会求全微分。
  3、理解方向导数与梯度的概念并掌握其计算方法。
  4、掌握多元复合函数偏导数的求法,会求隐函数的偏导数。
  5、了解曲线的切线和法平面及曲面的切平面和法线的概念,掌握二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求多元函数的最大值和最小值及一些简单的应用问题。重点是二元函数的极限和连续的概念,偏导数与全重点是二元函数的极限和连续的概念,偏导数与全微分的概念及计算复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度的概念及其计算。空间曲线的切线和法平面,曲面的切平面和法线,二元函数极值。难点是多元复合函数的求导法,二函数的泰勒公式。


  六、多元函数积分学
  1、理解二重积分与三重积分的概念,了解重积分的性质。
  2、掌握二重积分(直角坐标、极坐标)的计算方法,会计算三重积分(直角坐标、柱面坐标、球面坐标)。
  3、理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系;掌握计算两类曲线积分的方法;掌握格林公式并会运用平面曲线积分与路径无关的条件。
  4、了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。
  5、会用重积分、曲线积分和曲面积分求一些几何量和物理量。重点是利用直角坐标、极坐标计算二重积分。利用直角坐标、柱面坐标、球面坐标计算三重积分。两类曲线积分的概念、性质及计算,格林公式。两类曲面积分的概念、性质及计算,高斯公式。难点是化二重积分为二次积分、改换二次积分的积分次序以及三重积分计算。第二类曲面积分与斯托克斯公式。


  七、无穷级数
  1、掌握级数的基本性质及其级数收敛的必要条件,掌握几何级数与p级数的收敛性;掌握比值审敛法,会用正项级数的比较与根值审敛法。
  2、会用交错级数的莱布尼兹定理,了解绝对收敛和条件收敛的概念及它们的关系。
  3、会求幂级数的和函数以及数项级数的和,掌握幂级数收敛域的求法。
  4、掌握e的x次方、sinx、cosx、ln(1+x),(1+x)的a次方的马克劳林展开式,会用它们将简单函数作间接展开;会将定义在[-L,L]上的函数展开为傅立叶级数,会将定义在上的函数展开为正弦级数和余弦函数。重点是数项级数的概念与性质,正项级数的审敛法,交错级数及其审敛法,绝对收敛与条件收敛的概念。幂级数的收敛半径、收敛区间的求法,将函数展成傅立叶级数。难点是求幂级数的和函数,将函数展成幂级数、傅立叶级数。


  八、常微分方程
  1、了解微分方程及其解、阶、通解、初始条件和特解等概念;掌握变量可分离方程及一阶线性方程的解法。
  2、会用降阶法解y(n)=f(x),y″=f(x,y),y″=f(y,y')类的方程;理解线性微分方程解的性质和解的结构。
  3、掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
  4、会解包含两个未知函数的一阶常系数线性微分方程组。重点是微分方程的概念,变量可分离方程,一阶线性微分方程及二阶的常系数线性微分方程的解法。难点是由实际问题建立微分方程及确定定解条件。


  线性代数
  一、行列式

  本章的核心考点是行列式的计算,包括数值型行列式的计算和抽象型行列式的计算,其中数值型行列式的计算又分为低阶行列式和高阶行列式两种类型。对于数值型行列式来说,考试直接考查的题目相对较少,它总是伴随着线性方程组或者特征值与特征向量等的相关知识出题的。对行列式的考查多以抽象型行列式的形式出现,这一部分的考题综合性很强,与后续章节的联系比较紧密,除了要用到行列式常见的性质以外,更需要结合矩阵的运算,综合特征值、特征向量等相关考点。


  二、矩阵
  重点是矩阵的运算,尤其是逆矩阵、矩阵的初等变换和矩阵的秩是重中之重的核心考点。考试题目中经常涉及到伴随矩阵的定义、性质、行列式、可逆阵的逆矩阵、矩阵的秩及包含伴随矩阵的矩阵方程等。另外,这几年还经常出现与初等变换与初等矩阵相关的命题。本章常见题型有:计算方阵的幂、与伴随矩阵相关的命题、与初等变换相关的命题、有关逆矩阵的计算与证明、解矩阵方程等。


  三、向量
  本章的核心考点是向量组的线性相关性的判断,它也是线性代数的重点,同时也是考研的重点。吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,在做此处题目的时候要学会与线性表出、向量组的秩及线性方程组等相关知识联系,从各个方面加强对向量组线性相关性的理解。此章常见的考试题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题(数一要求)。


  四、线性方程组
  考研数学重点考查的章节,从历年真题来看,方程组出题的频率较高。本章的核心考点有:解的判定与解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要的题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题等。本章节常与向量章节联系在一起出题,二者属于同一问题的不同描述,在考题中经常是交替出现的。


  五、特征值与特征向量
  考研数学重点考查的章节,线性代数的核心内容,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。核心题型有:数值型矩阵的特征值和特征向量的计算、抽象型矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求矩阵A、有关实对称矩阵的问题。本章节与二次型联系也很紧密。


  六、二次型
  这部分需要掌握两点:一是用正交变换法和配方法化二次型为标准形,核心是正交变换法。二是二次型正定性的判断,核心考点是二次型正定性的判定方法。


  概率论与数理统计
  一、随机事件和概率

  事件、概率与独立性是本章给出的概率论中最基本、最重要的三个概念。事件关系及其运算是本章的重点和难点,概率计算是本章的重点。注意事件与概率之间的关系。本章主要考查条件概率、事件的独立性和五大公式,特别需要关注全概率公式。对于事件的独立性,一定要和互斥事件、互逆事件区分开来。


  二、随机变量及其分布
  将随机事件给以数量标识,即用随机变量描述随机现象是近代概率论中最重要的方法。一维离散型随机变量需要掌握住概率分布,一维连续型随机变量是通过概率密度进行描述。本章的重点是常见随机变量的分布,经常以客观题的形式考查。求随机变量的分布函数紧扣定义即可。一维随机变量是二维随机变量的基础。复习二维随机变量时,可以类比于一维随机变量进行复习。


  三、多维随机变量的分布
  二维随机变量及其分布是考试的重点内容,基本上都是以解答题的形式考查。
  1、二维离散型随机变量的考查主要是建立概率分布,相对来说比较简单。
  2、二维连续型随机变量是考试的重点,同时是考试的难点。
  3、随机变量函数的分布同样是考试的重点,也是考试的难点,考生要引起重视。


  四、随机变量的数字特征
  它是描述随机变量分布特征的数字,能够集中地刻画出随机变量取值规律的特点。这是概率的重点,近10年至少考了13次有关数字特征的问题,特别是随机变量函数的期望。


  除了求一些给定的随机变量的数学期望外,很多数学期望或方差的计算都与常用分布有关。应该牢记常用分布的参数的概率意义,特别是二项分布、指数分布、均匀分布和正态分布。

  五、大数定律及中心极限定理
  它都是讨论随机变量序列的极限定理,他们是概率论中比较深入的理论结果。这部分内容不是重点,也不经常考,只要把这些定理、定律的条件与结论记住就可以了。


  六、样本及抽样分布
  统计学的核心问题是由样本推断总体,要理解统计的一些基本概念。
  掌握几个常用统计量,特别是正态总体的抽样分布。掌握三大分布的典型模式及其分位点。本章内容是数理统计的基础,也是重点之一,经常以选择题、填空题的形式出现。


  七、参数估计
  矩估计和最大似然估计是考试的重点,对于数一来说,有时还会要求验证估计量的无偏性,这是和数字特征相结合。区间估计和假设检验只有数一的同学要求,考题中较少涉及到。

网校排名推荐课程

Tags:最全面,考研数学,各科核心,考点梳理  
责任编辑:iqlong
  • 上一篇网校新闻:
  • 下一篇网校新闻: 没有了
  • 网校排名免责声明: 此内容系根据用户的意愿自动排行,不代表网校排名赞成被分类网校的内容或立场