在行测考试中,容斥原理题令很多考生头痛不已,因为容斥原理题看起来复杂多变,让考生一时找不着头绪。但该题型还是有着非常明显的内在规律,只要考生能够掌握该题型的内在规律,看似复杂的问题就能迎刃而解,下面笔者就该题型分两种情况进行剖析,相信能够给考生带来一定的帮助。
一、两集合类型
1、解题技巧
题目中所涉及的事物属于两集合时,容斥原理适用于条件与问题都可以直接带入公式的题目,公式如下:
A∪B=A+B-A∩B
快速解题技巧:总数=两集合数之和+两集合之外数-两集合公共数
2、真题示例
【例1】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有( )
A、27人 B、25人 C、19人 D、10人
【答案】B
【解析】直接代入公式为:50=31+40+4-A∩B
得A∩B=25,所以答案为B。
【例2】某服装厂生产出来的一批衬衫大号和小号各占一半。其中25%是白色的,75%是蓝色的。如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?( )
A、15 B、25 C、35 D、40
【答案】C
【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A∩B,本题设小号和蓝色分别为两个事件A和B,小号占50%,蓝色占75%,直接代入公式为:100=50+75+10-A∩B,得:A∩B=35。
二、三集合类型
1、解题步骤
涉及到三个事件的集合,解题步骤分三步:①画文氏图;②弄清图形中每一部分所代表的含义,按照中路(三集合公共部分)突破的原则,填充各部分的数字;③代入公式(A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C)进行求解。
2、解题技巧
三集合类型题的解题技巧主要包括一个计算公式和文氏图。
公式:总数=各集合数之和-两集合数之和+三集合公共数+三集合之外数
文氏图如下:
其中各区域含义分别为:1区域代表只属于A集合;2区域代表只属于A和B;3区域代表只属于B集合;4区域代表只属于B和C;5区域代表三集合公共部分;6区域代表只属于A和C;7区域代表只属于C集合;2+5区域代表A∩B; 4+5区域代表B∩C;5+6区域代表A∩C;1+2+5+6区域代表属于A集合;3+2+5+4区域代表属于B集合;4+5+6+7区域代表属于C集合。
3、真题示例
【例3】【国考2010-47】某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?( )
A.120 B.144 C.177 D.192
【答案】A
【解析】本题画图按中路突破原则,先填充三集合公共部分数字24,再推其他部分数字,得下图:
根据每个区域含义应用公式得到:
总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数
=63+89+47-{(x+24)+(z+24)+(y+24)}+24+15
=199-{(x+z+y)+24+24+24}+24+15
根据上术含义分析得到:x+z+y只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以x+z+y的值为46人;得本题答案为120.
【例4】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人( )
A.22人 B.28人 C.30人 D.36人
【答案】A
【解析】本题画图按中路突破原则,先填充三集合公共部分数字12,再推其他部分数字,得下图:
根据各区域含义及应用公式得到:
总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数
100=58+38+52-{18+16+(12+ x)}+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得到:x=14。52=x+12+4+Y=14+12+4+Y,得到Y=22人。
课程 | 课程说明 | 课时 | 购买 |
---|---|---|---|
笔试一对一 |
分模块设置,个性化内容,全程名师互动辅导,因材施教,确保效果 |
4-12 | 查看详细 |
直播冲刺班 |
北京面授冲刺班网络直播,名师名课实时分享,更可以下载录像课后复习 |
16 | 300元 |
申论批改班 |
华图申论批改老师一对一申论作文批改,专家点评,快速提升写作水平 |
1次 | 160元 |